14,132 research outputs found

    Quasi-geostrophic free mode models of long-lived Jovian eddies: Forcing mechanisms and crucial observational tests

    Get PDF
    Observations of Jupiter and Saturn long-lived eddies, such as Jupiter's Great Red Spot and White Ovals, are presently compared with laboratory experiments and corresponding numerical simulations for free thermal convection in a rotating fluid that is subject to horizontal differential heating and cooling. Difficulties in determining the essential processes maintaining and dissipating stable eddies, on the basis of global energy budget studies, are discussed; such difficulties do not arise in considerations of the flow's potential vorticity budget. On Jupiter, diabatically forced and transient eddy-driven flows primarily differ in the implied role of transient eddies in transporting potential vorticity across closed geostrophic streamlines in the time mean

    Transport of absolute angular momentum in quasi-axisymmetric equatorial jet streams

    Get PDF
    It is well known that prograde equatorial jet stresses cannot occur in an axisymmetric inviscid fluid, owing to the constraints of local angular momentum conservation. For a viscous fluid, the constraints of mass conservation prevent the formation of any local maximum of absolute angular momentum (m) without a means of transferring m against its gradient (delta m) in the meridional plane. The circumstances under which m can be diffused up-gradient by normal molecular viscosity are derived, and illustrated with reference to numerical simulations of axisymmetric flows in a cylindrical annulus. Viscosity is shown to act so as to tend to expel m from the interior outwards from the rotation axis. Such an effect can produce local super-rotation even in a mechanically isolated fluid. The tendency of viscosity to result in the expulsion of m is shown to be analogous in certain respects to a vorticity-mixing hypothesis for the effects of non-axisymmetric eddies of the zonally-averaged flow. It is shown how the advective and diffusive transport of m by non-axisymmetric eddies can be represented by the Transformed Eulerian Mean meridional circulation and the Eliassen-Palm (EP) flux of Andrews and McIntyre respectively, in the zonal mean. Constraints on the form and direction of the EP flux in an advective/diffusive flow for such eddies are derived, by analogy with similar constraints on the diffusive flux of m due to viscosity

    Editorial

    No full text
    International audienceNo Abstrac
    • …
    corecore